CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Comparison of electron drift waves in numerical and analytical tokamak equilibria

Tariq Rafiq (Institutionen för elektromagnetik) ; Johan Anderson (Institutionen för elektromagnetik, Transportteori) ; Mikael Persson (Institutionen för elektromagnetik)
Plasma Physics and Controlled Fusion (0741-3335). Vol. 46 (2004), 1, p. 105-122.
[Artikel, refereegranskad vetenskaplig]

In this paper, we demonstrate the importance of the details of the equilibria on the stability of electron drift waves. A comparison of electrostatic electron drift waves in numerical and analytical tokamak equilibria is presented in fully three-dimensional circular and non-circular tokamaks. The numerical equilibria are obtained using the variational moments equilibrium code and the analytical equilibria used is the generalized ŝ-α model. An eigenvalue equation for the model is derived using the ballooning mode formalism and solved numerically using a standard shooting technique. The stability and the localization of the electron drift wave is found to be strongly dependent on the local shear of the magnetic field. Large values of the local shear are found to be stabilizing. A disagreement in the results is found between analytical and numerical equilibria at aspect ratios of typical tokamaks, suggesting that the latter approach should be used in the transport calculations. The effects of the local shaping of the magnetic surfaces are complicated and can be both stabilizing and destabilizing, depending on the details of the equilibria.

Nyckelord: Plasma Physics, Fusion, Instabilities, Drift Waves, Plasma Shaping

Denna post skapades 2006-08-28. Senast ändrad 2016-10-18.
CPL Pubid: 9871


Läs direkt!

Lokal fulltext (fritt tillgänglig)

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för elektromagnetik (1900-2004)
Institutionen för elektromagnetik, Transportteori (1900-2004)


Fusion, plasma och rymdfysik

Chalmers infrastruktur