CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity

Roland Becker ; Erik Burman ; Peter Hansbo (Institutionen för matematiska vetenskaper, matematik)
Computer Methods in Applied Mechanics and Engineering (0045-7825). Vol. 198 (2009), 41-44, p. 3352-3360.
[Artikel, refereegranskad vetenskaplig]

In this note we propose a finite element method for incompressible (or compressible) elasticity problems with discontinuous modulus of elasticity (or, if compressible, Poisson’s ratio). The problem is written on mixed form using P1-continuous displacements and elementwise P0 pressures, leading to the possibility of eliminating the pressure beforehand in the compressible case. In the incompressible case, the method is augmented by a stabilization term, penalizing the pressure jumps. We show a priori error estimates under certain regularity hypothesis. In particular we prove that if the exact solution is sufficiently smooth in each subdomain then the convergence order is optimal.

Nyckelord: Nitsche’s method, Extended finite element method, Incompressible elasticity, Stokes’ problem, Discontinuous coefficients, Surface tension



Denna post skapades 2009-09-08. Senast ändrad 2016-08-15.
CPL Pubid: 97621

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Tillämpad matematik
Teknisk mekanik

Chalmers infrastruktur