CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Structural analysis of the microporous semiconductor K-SBC-1 during its reversible sorption of water

Alexander Shulman (Institutionen för kemi- och bioteknik, Teknisk ytkemi) ; Vratislav Langer (Institutionen för kemi- och bioteknik, Oorganisk miljökemi) ; Anders Palmqvist (Institutionen för kemi- och bioteknik, Teknisk ytkemi)
Journal of Solid State Chemistry (0022-4596). Vol. 182 (2009), 8, p. 2118-2121.
[Artikel, refereegranskad vetenskaplig]

The reversible sorption of water molecules in the crystalline microporous semiconductor K-SBC-1 was investigated using temperature-resolved single-crystal XRD analysis. Three crystallographic sites of adsorbed water molecules, differing in adsorption strength, were discovered in the pores of K-SBC-1. The least tightly bound is located at the centre of the {Sb12O18} tube and begins to desorb around 50°C. Above 200°C the more strongly bound water molecules rearrange from their potassium-coordinating positions to the centre of the tube, thus obtaining the characteristics of the loosely bound water, and desorb thereafter. At 240°C approximately 10% of the water has desorbed, leaving the host framework of K-SBC-1 intact. Upon re-adsorption of water at room temperature the molecules preferentially adsorb at sites in the centre of the {Sb12O18} tube. This shows that a heat treatment of 240–300°C activates K-SBC-1 for sorption and explains the observed facile desorption of water from activated samples.

Nyckelord: host–guest system, microporous material, semiconductor sensor, X-ray diffraction



Denna post skapades 2009-08-25. Senast ändrad 2013-05-07.
CPL Pubid: 96606

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Teknisk ytkemi (2005-2014)
Institutionen för kemi- och bioteknik, Oorganisk miljökemi (2005-2014)

Ämnesområden

Fasta tillståndets kemi

Chalmers infrastruktur