CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Prediction method for flow boiling heat transfer in a herringbone microfin tube

Sven Wellsandt (Extern ; Institutionen för energi och miljö, Värmeteknik och maskinlära) ; Lennart Vamling (Institutionen för energi och miljö, Värmeteknik och maskinlära)
International Journal of Refrigeration-Revue Internationale Du Froid Vol. 28 (2005), 6, p. 912-920.
[Artikel, refereegranskad vetenskaplig]

Based on experimental data for R134a, the present work deals with the development of a prediction method for heat transfer in herringbone microfin tubes. As is shown in earlier works, heat transfer coefficients for the investigated herringbone microfin tube tend to peak at lower vapour qualities than in helical microfin tubes. Correlations developed for other tube types fail to describe this behaviour. A hypothesis that the position of the peak is related to the point where the average film thickness becomes smaller than the fin height is tested and found to be consistent with observed behaviour. The proposed method accounts for this hypothesis and incorporates the well-known Steiner and Taborek correlation for the calculation of flow boiling heat transfer coefficients. The correlation is modified by introducing a surface enhancement factor and adjusting the two-phase multiplier. Experimental data for R134a are predicted with an average residual of 1.5% and a standard deviation of 21%. Tested against experimental data for mixtures R410A and R407C, the proposed method overpredicts experimental data by around 60%. An alternative adjustment of the two-phase multiplier, in order to better predict mixture data, is discussed.

Nyckelord: Heat transfer; Mass transfer; Microfin tube; Geometry; Experiment; R134a; R410A; R407C; Correlation

Denna post skapades 2006-08-25. Senast ändrad 2015-02-11.
CPL Pubid: 9590


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för energi och miljö, Värmeteknik och maskinlära (2005-2014)


Termisk energiteknik
Kemisk energiteknik

Chalmers infrastruktur