CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Enumeration of derangements with descents in prescribed positions

Niklas Eriksen (Institutionen för matematiska vetenskaper, matematik) ; Ragnar Freij (Institutionen för matematiska vetenskaper) ; Johan Wästlund (Institutionen för matematiska vetenskaper, matematik)
Electronic Journal of Combinatorics (1077-8926). Vol. 16 (2009), 1, p. R32.
[Artikel, refereegranskad vetenskaplig]

We enumerate derangements with descents in prescribed positions. A generating function was given by Guo-Niu Han and Guoce Xin in 2007. We give a combinatorial proof of this result, and derive several explicit formulas. To this end, we consider fixed point $\lambda$-coloured permutations, which are easily enumerated. Several formulae regarding these numbers are given, as well as a generalisation of Euler's difference tables. We also prove that except in a trivial special case, if a permutation $\pi$ is chosen uniformly among all permutations on $n$ elements, the events that $\pi$ has descents in a set $S$ of positions, and that $\pi$ is a derangement, are positively correlated.

Nyckelord: Permutation statistic, fixed point, descent



Denna post skapades 2009-05-29. Senast ändrad 2016-07-26.
CPL Pubid: 94521

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)
Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)

Ämnesområden

Diskret matematik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Enumeration on words, complexes and polytopes


Topics in algorithmic, enumerative and geometric combinatorics