CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Joint Anisotropic Mean Shift and Consensus Point Feature Correspondences for Object Tracking in Video

Zulfiqar H. Khan (Institutionen för signaler och system, Signalbehandling) ; Irene Y.H. Gu (Institutionen för signaler och system, Signalbehandling) ; Tiesheng Wang (Institutionen för signaler och system, Signalbehandling) ; Andrew Backhouse (Institutionen för signaler och system, Signalbehandling)
Proc. of IEEE International conf. on Multimedia and Expo. (ICME '09) p. 1270-1273. (2009)
[Konferensbidrag, refereegranskat]

We propose a novel tracking scheme that jointly employs point feature correspondences and object appearance similarity. For selecting point correspondences, we use a subset of scale-invariant point features from SIFT that agree with a pre-defined affine transformation. The selected consensus points are then used for pre-selecting candidate regions. For appearance similarity based tracking, we employ an existing anisotropic mean shift, from which the formula for estimating bounding box parameters (width, height, orientation and center) are derived. A switching criterion is utilized to handle the situation where only a small number of point correspondences is found. Experiments and evaluation are performed on tracking moving objects on videos where objects may contain partial occlusions, intersection, deformation and pose changes among other transforms. Our comparisons with two existing methods have shown that the proposed scheme has yielded marked improvement, especially in terms of reducing tracking drifts, of robustness to occlusions, and of tightness and accuracy of tracked bounding box.

Nyckelord: Video object tracking, anisotropic mean shift, point feature correspondences, SIFT, RANSAC, appearance model.

Denna post skapades 2009-05-02. Senast ändrad 2009-11-27.
CPL Pubid: 93350


Institutioner (Chalmers)

Institutionen för signaler och system, Signalbehandling



Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Robust Visual Object Tracking mean shift, particle filters and point features