CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Empirical testing of the infinite source poisson data traffice model

Charles-Antoine Guerin ; Henrik Nyberg ; Olivier Perrin ; Sidney Resnick ; Holger Rootzén (Institutionen för matematik) ; Catalin Starica (Institutionen för matematik)
Stochastic models Vol. 19 (2003), p. 156-196.
[Artikel, refereegranskad vetenskaplig]

The infinite source Poisson model is a fluid queue approximation of network data transmission that assumes that sources begin constant rate transmissions of data at Poisson time points for random lengths of time. This model has been a popular one as analysts attempt to provide explanations for observed features in telecommunications data such as self-similarity, long range dependence and heavy tails. We survey some features of this model in cases where transmission length distributions have (a) tails so heavy that means are infinite, (b) heavy tails with finite mean and infinite variance and (c) finite variance. We survey the self-similarity properties of various descriptor processes in this model and then present analyses of four data sets which show that certain features of the model are consistent with the data while others are contradicted. The data sets are 1) the Boston University 1995 study of web sessions, 2) the UC Berkeley home IP HTTP data collected in November 1996, 3) traces collected in end of 1997 at a Customer Service Switch in Munich, and 4) detailed data from a corporate Ericsson WWW server from October 1998.

Nyckelord: data transmission modelling, internet traffic, heavy tails, regular variation, Pareto tails, self-similarity, scaling

Denna post skapades 2009-04-24. Senast ändrad 2016-08-31.
CPL Pubid: 92891


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematik (1987-2001)
Institutionen för matematik (2002-2004)


Matematisk statistik

Chalmers infrastruktur