CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Finite element approximation of the linear stochastic Cahn-Hilliard equation

Ali Mesforush (Institutionen för matematiska vetenskaper, matematik)
Göteborg : Chalmers University of Technology, 2009. - 38 s.

The linearized Cahn-Hilliard-Cook equation is discretized in the spatial variables by a standard finite element method. Strong convergence estimates are proved under suitable assumptions on the covariance operator of the Wiener process, which is driving the equation. The backward Euler time stepping is also studied. The analysis is set in a framework based on analytic semigroups. The main part of the work consists of detailed error bounds for the corresponding deterministic equation.

Nyckelord: Cahn-Hilliard-Cook equation, finite element method, backward Euler method, error estimate, strong convergence

Denna post skapades 2009-04-20.
CPL Pubid: 92673


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)


Numerisk analys

Chalmers infrastruktur


Datum: 2009-05-27
Tid: 13:15
Lokal: MV:L14
Opponent: Mohammad Asadzadeh

Ingår i serie

Preprint - Department of Mathematical Sciences, Chalmers University of Technology and Göteborg University 2009:19