CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Unsupervised Extraction of the Nonlinear Principal Components applied for Voice Conversion

Behrooz Makki (Institutionen för signaler och system, Kommunikationssystem) ; Mona Noori Hosseini ; Seyedali Seyedsalehi
International Joint Conference on Neural Networks (1098-7576). Vol. 1 (2008), 1, p. 1370 - 1373.
[Konferensbidrag, refereegranskat]

Nonlinear principal component analysis (NLPCA) is one of the most progressive computational tools developed during the last two decades. However, in spite of its proper performance in feature extraction and dimension reduction, it is considered as a blind processor which can not extract physical or meaningful factors from dataset. This paper presents a new distributed model of autoassociative neural network which increases meaningfulness degree of the extracted parameters. The model is implemented to perform voice conversion (VC) and, as it will be seen through comparisons, results in proper conversion quality.

Nyckelord: Feature extraction; Neural nets; Principal component analysis: Speech processing

Denna post skapades 2009-02-25. Senast ändrad 2010-09-09.
CPL Pubid: 90439


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Kommunikationssystem


Elektroteknik och elektronik

Chalmers infrastruktur