CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Krylov Subspace Methods for Linear Systems, Eigenvalues and Model Order Reduction

Daniel Skoogh (Institutionen för matematik)
Göteborg : Chalmers University of Technology, 1998. ISBN: 91-7197-727-9.
[Doktorsavhandling]

New variants of Krylov subspace methods for numerical solution of linear systems, eigenvalue, and model order reduction problems are described.

A new method to solve linear systems of equations with several right-hand sides is described. It uses the basis from a previous solution to reduce the number of matrix vector multiplications needed to solve a linear system of equations with a new right-hand side.

For eigenproblems and model order reduction the rational Krylov method is used. The rational Krylov method is an extension of the shift-and-invert Arnoldi method where several shifts (factorisations of a shifted pencil) are used to compute an orthonormal basis for a subspace. It is shown how the basis vectors can be generated in parallel. It is also shown how to create a reduced-order model of a linear dynamic system, and how to make error estimates of the Laplace domain transfer function of the reduced-order model. Further it is shown how to make a passive model of a passive RLC circuit.

AMS subject classification 65F15, 65F50, 65Y05, 65F10, 93A30, 93B40

Nyckelord: eigenvalues, eigenvectors, sparse, parallel, rational, Krylov, shift, invert, Arnoldi, linear systems, iterative, model, reduction, passive, 65F15, 65F50, 65Y05, 65F10, 93A30, 93B40



Denna post skapades 2006-08-25. Senast ändrad 2013-09-25.
CPL Pubid: 878

 

Institutioner (Chalmers)

Institutionen för matematik (1987-2001)

Ämnesområden

Matematik

Chalmers infrastruktur

Ingår i serie

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie 1450