CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Comparison of classical and quantum dynamics for collinear cluster scattering

A Bäck ; Nikola Markovic (Institutionen för kemi- och bioteknik, Fysikalisk kemi)
JOURNAL OF CHEMICAL PHYSICS (0021-9606). Vol. 122 (2005), 14, p. 144711 (1-9).
[Artikel, refereegranskad vetenskaplig]

The collinear dynamics of a cluster of four particles colliding with a fixed particle representing a surface is investigated using a four-dimensional wave packet approach. The properties of the system are chosen to resemble a water cluster interacting with graphite, but a deeper surface-particle potential is also considered causing significant dissociation of the cluster. Having four different product arrangement channels the system is quantum mechanically demanding but still manageable. The dynamical richness makes it a suitable benchmark system for evaluation of classical and quantum/classical schemes. The average energy transferred to the cluster and the three dissociation probabilities are presented as function of the initial state of the cluster. In addition to wave packet data, results obtained using quasiclassical as well as Wigner sampled classical trajectories are presented. The main conclusion is that classical mechanics can describe the dynamics of the system in a very satisfactory way. Including zero-point energy in the classical simulations is particularly important for a good description of dissociation but less important for energy transfer.

Nyckelord: water, graphite, molecular clusters, molecule-surface impact, dissociation

Denna post skapades 2009-01-08.
CPL Pubid: 83998


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Fysikalisk kemi (2005-2014)


Fysikalisk kemi

Chalmers infrastruktur