CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Adaptive Finite Element Methods for Compressible Two-Phase Flow

Erik Burman (Institutionen för matematik)
Göteborg : Chalmers University of Technology, 1998. ISBN: 91-7197-687-6.
[Doktorsavhandling]

In this thesis we develop, apply and analyse adaptive finite element methods with error control for compressible flow problems, focusing in particular on two-phase flow. The adaptive algorithms, aiming at quantitative error control with efficient use of computational resources, are based on a posteriori error estimates, where the error is estimated in terms of the computed solution, the local mesh-size and certain stability factors. The stability factors measure the stability properties of an associated linearized dual problem. We present analytical and computational results concerning stability factors and quantitative error control in various norms.

Nyckelord: adaptive finite element methods, two-phase flow, compressible flow, conservation laws, hyperbolic systems, a posteriori error estimates, streamline diffusion, stability analysis, quantitative error control, adaptive algorithms



Denna post skapades 2006-08-25. Senast ändrad 2013-09-25.
CPL Pubid: 837

 

Institutioner (Chalmers)

Institutionen för matematik (1987-2001)

Ämnesområden

Matematik

Chalmers infrastruktur

Ingår i serie

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie 1413