CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

G-Convergence and Homogenization of Monotone Damped Hyperbolic Equations

Gabriel Nguetseng ; Hubert Nnang ; Nils Svanstedt (Institutionen för matematiska vetenskaper, matematik)
Banach Journal of Mathematical Analysis (1735-8787). Vol. 4 (2010), 1, p. 100-115.
[Konferensbidrag, refereegranskat]

Multiscale stochastic homogenization is studied for quasilinear hyperbolic problems. We consider the asymptotic behaviour of a sequence of realizations of the form partial derivative(2)u(epsilon)(omega)/partial derivative t(2) - div (a(T(1)(x/epsilon(1))omega(1), T(2)(x/epsilon(2))omega(2), t, Du(epsilon)(omega))) - Delta(partial derivative u(epsilon)(omega)/partial derivative t) + G(T(3)(x/epsilon(3))omega(3,) t, partial derivative u(epsilon)(omega)/partial derivative t) = f. It is shown, under certain structure assumptions on the random maps a(omega(1), omega(2,) t, xi) and G(omega(3), t, eta), that the sequence {u(epsilon)(omega)} of solutions converges weakly in L(p)(0, T; W(0)(1,p)(Omega)) to the solution u of the homogenized problem partial derivative(2)u/partial derivative t(2) - div (b(t, (Du)) - Delta(partial derivative u/partial derivative t) + (G) over bar (t, partial derivative u/partial derivative t) = f.

Nyckelord: multiscale, stochastic, homogenization, G-convergence, elliptic, parabolic, hyperbolic


Conference: Conference on Analysis, Inequalities and Homogenization Theory Location: Lulea, SWEDEN Date: JUN 08-11, 2009



Denna post skapades 2008-12-29. Senast ändrad 2012-02-23.
CPL Pubid: 83119

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Matematisk analys

Chalmers infrastruktur