CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A new reaction path for the C + NO reaction: dynamics on the 4A'' potential-energy surface.

Erik Abrahamsson ; Stefan Andersson ; Nikola Markovic (Institutionen för kemi- och bioteknik, Fysikalisk kemi) ; Gunnar Nyman
Physical chemistry chemical physics : PCCP (1463-9076). Vol. 10 (2008), 30, p. 4400-9.
[Artikel, refereegranskad vetenskaplig]

We present a new reaction path without significant barriers for the C + NO reaction, forming ground state N((4)S) and CO. Electronic structure (CASPT2) calculations have been performed for the two lowest (4)A'' states of the CNO system. The lowest of these states shows no significant barriers against reaction in the C + NO or O + CN channels. This surface has been fitted to an analytical function using a many-body expansion. Using this surface, and the previously published (2)A' and (2)A'' surfaces [Andersson et al., Phys. Chem. Chem. Phys., 2000, 2, 613; Andersson et al., Chem. Phys., 2000, 259, 99], we have performed quasiclassical trajectory (QCT) calculations, obtaining rate coefficients for the C((3)P) + NO(X(2)Pi) --> CO(X(1)Sigma(+)) + N((4)S,(2)D) and C((3)P) + NO(X(2)Pi) --> O((3)P) + CN(X(2)Sigma(+)) reactions. We have also simulated the crossed molecular beam experiments of Naulin et al. [Chem. Phys., 1991, 153, 519] The inclusion of the (4)A'' surface in the QCT calculations gives excellent agreement with experiments. This is the first time an adiabatic pathway from C((3)P) + NO(X(2)Pi) to CO(X(1)Sigma(+))+N((4)S) has been reported.

Nyckelord: Carbon, chemistry, Computer Simulation, Energy Transfer, Models, Chemical, Nitric Oxide, chemistry, Quantum Theory

Denna post skapades 2008-12-15. Senast ändrad 2010-01-26.
CPL Pubid: 81524


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi (2001-2011)
Institutionen för kemi- och bioteknik, Fysikalisk kemi (2005-2014)



Chalmers infrastruktur