CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Complemented hypercyclic subspaces

Henrik Petersson (Institutionen för matematiska vetenskaper)
Houston Journal of Mathematics (0362-1588). Vol. 33 (2007), 2, p. 541-553.
[Artikel, refereegranskad vetenskaplig]

A continuous linear operator T : X -> X is said to be hypercyclic if there exists a vector x is an element of X, called hypercyclic for T, such that {T(n)x}(n >= 0) is dense. A hypercyclic subspace for T is an infinite dimensional closed subspace H subset of X whose nonzero vectors are hypercyclic for T. Criterions for the existence of hypercyclic subspaces have been studied intensively lately in the setting of Banach and Frechet spaces. We study here conditions for the existence of complemented hypercyclic subspaces.

Nyckelord: hypercyclic subspace, hypercyclicity spectrum, complemented subspace, Frechet space, BANACH-SPACES, OPERATORS, VECTORS, INVARIANT, UNIVERSAL, MANIFOLDS, DENSE

Denna post skapades 2008-12-15.
CPL Pubid: 81484


Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)



Chalmers infrastruktur