CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Investigating hydration dependence of dynamics of confined water: Monolayer, hydration water and Maxwell-Wagner processes

Johan Sjöström (Institutionen för teknisk fysik, Kondenserade materiens fysik) ; Jan Swenson (Institutionen för teknisk fysik, Kondenserade materiens fysik) ; Rikard Bergman (Institutionen för teknisk fysik, Kondenserade materiens fysik) ; Sigeharu Kittaka
Journal of Chemical Physics Vol. 128 (2008), 15, p. art. nr. 154503.
[Artikel, refereegranskad vetenskaplig]

The dynamics of water confined in silica matrices MCM-41 C10 and C18, with pore diameter of 21 and 36 Å, respectively, is examined by broadband dielectric spectroscopy (10-2 - 109 Hz) and differential scanning calorimetry for a wide temperature interval (110-340 K). The dynamics from capillary condensed hydration water and surface monolayer of water are separated in the analysis. Contrary to previous reports, the rotational dynamics are shown to be virtually independent on the hydration level and pore size. Moreover, a third process, also reported for other systems, and exhibiting a saddlelike temperature dependence is investigated. We argue that this process is due to a Maxwell-Wagner process and not to strongly bound surface water as previously suggested in the literature. The dynamics of this process is strongly dependent on the amount of hydration water in the pores. The anomalous temperature dependence can then easily be explained by a loss of hydration water at high temperatures in contradiction to previous explanations. © 2008 American Institute of Physics.



Denna post skapades 2008-12-09. Senast ändrad 2016-07-21.
CPL Pubid: 80786

 

Läs direkt!

Lokal fulltext (fritt tillgänglig)


Institutioner (Chalmers)

Institutionen för teknisk fysik, Kondenserade materiens fysik (1900-2015)

Ämnesområden

Den kondenserade materiens fysik
Vätskefysik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Relaxation dynamics of perturbed water and other H-bonded liquids