CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Rational solutions of CYBE for simple compact real Lie algebras

Iulia Pop ; Alexander Stolin (Institutionen för matematiska vetenskaper)
JOURNAL OF GEOMETRY AND PHYSICS (0393-0440). Vol. 57 (2007), 5, p. 1379-1390.
[Artikel, refereegranskad vetenskaplig]

In [A.A. Stolin, On rational solutions of Yang–Baxter equation for sl(n), Math. Scand. 69 (1991) 57–80; A.A. Stolin, On rational solutions of Yang–Baxter equation. Maximal orders in loop algebra, Comm. Math. Phys. 141 (1991) 533–548; A. Stolin, A geometrical approach to rational solutions of the classical Yang–Baxter equation. Part I, in: Walter de Gruyter & Co. (Ed.), Symposia Gaussiana, Conf. Alg., Berlin, New York, 1995, pp. 347–357] a theory of rational solutions of the classical Yang–Baxter equation for a simple complex Lie algebra g was presented. We discuss this theory for simple compact real Lie algebras g. We prove that up to gauge equivalence all rational solutions have the form X(u, v) = u−v + t1 ^ t2 + · · · + t2n−1 ^ t2n, where denotes the quadratic Casimir element of g and {ti } are linearly independent elements in a maximal torus t of g. The quantization of these solutions is also emphasized.

Nyckelord: yang-baxter equation



Denna post skapades 2008-12-09. Senast ändrad 2009-02-19.
CPL Pubid: 80451

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)

Ämnesområden

Tillämpad matematik
Matematisk fysik

Chalmers infrastruktur