CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

The Friedrichs extension of the Aharonov-Bohm Hamiltonian on a disc

Johannes Brasche (Institutionen för matematiska vetenskaper, matematik) ; Michael Melgaard
Integral equations and operator theory (0378-620X). Vol. 52 (2005), 3, p. 419-436.
[Artikel, refereegranskad vetenskaplig]

We show that the Aharonov-Bohm Hamiltonian considered on a disc has a four-parameter family of self-adjoint extensions. Among the infinitely many self-adjoint extensions, we determine to which parameters the Friedrichs extension H-F corresponds and its lowest eigenvalue is found. Moreover, we note that the diamagnetic inequality holds for H-F.

Nyckelord: ordinary differential-operators, sturm-liouville operators, boundary-conditions, semigroups, domination



Denna post skapades 2008-12-09. Senast ändrad 2013-10-24.
CPL Pubid: 80405

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)

Ämnesområden

Matematik

Chalmers infrastruktur