CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Classification of burst and suppression in the neonatal electroencephalogram

Johan Löfhede (Institutionen för signaler och system, Medicinska signaler och system) ; N Löfgren ; Magnus Thordstein ; Anders Flisberg ; Ingemar Kjellmer ; Kaj Lindecrantz (Institutionen för signaler och system, Medicinska signaler och system)
Journal of neural engineering (1741-2560). Vol. 5 (2008), 4, p. 402-10.
[Artikel, refereegranskad vetenskaplig]

Fisher's linear discriminant (FLD), a feed-forward artificial neural network (ANN) and a support vector machine (SVM) were compared with respect to their ability to distinguish bursts from suppressions in electroencephalograms (EEG) displaying a burst-suppression pattern. Five features extracted from the EEG were used as inputs. The study was based on EEG signals from six full-term infants who had suffered from perinatal asphyxia, and the methods have been trained with reference data classified by an experienced electroencephalographer. The results are summarized as the area under the curve (AUC), derived from receiver operating characteristic (ROC) curves for the three methods. Based on this, the SVM performs slightly better than the others. Testing the three methods with combinations of increasing numbers of the five features shows that the SVM handles the increasing amount of information better than the other methods.

Denna post skapades 2008-12-02. Senast ändrad 2010-01-27.
CPL Pubid: 79462


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system, Medicinska signaler och system
Institutionen för neurovetenskap och fysiologi, sektionen för klinisk neurovetenskap och rehabilitering (GU)
Institutionen för kliniska vetenskaper, sektionen för kvinnors och barns hälsa (GU)


Industriell bioteknik

Chalmers infrastruktur