CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

The critical contact process in a randomly evolving environment dies out

Jeffrey Steif (Institutionen för matematiska vetenskaper, matematik) ; Marcus Warfheimer (Institutionen för matematiska vetenskaper, matematik)
Latin American Journal of Probability and Mathematical Statistics - ALEA (1980-0436). Vol. 4 (2008), p. 337-357.
[Artikel, refereegranskad vetenskaplig]

Bezuidenhout and Grimmett proved that the critical contact process dies out. Here, we generalize the result to the so called contact process in a random evolving environment (CPREE), introduced by Erik Broman. This process is a generalization of the contact process where the recovery rate can vary between two values. The rate which it chooses is determined by a background process, which evolves independently at different sites. As for the contact process, we can similarly define a critical value in terms of survival for this process. In this paper we prove that this definition is independent of how we start the background process, that finite and infinite survival (meaning nontriviality of the upper invariant measure) are equivalent and finally that the process dies out at criticality.

Denna post skapades 2008-12-02. Senast ändrad 2014-09-29.
CPL Pubid: 79359


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematik (2005-2016)


Annan matematik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Interacting particle systems in varying environment, stochastic domination in statistical mechanics and optimal pairs trading in finance