CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Density-functional theory of nonequilibrium tunneling

Per Hyldgaard (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem)
Physical Review B. Condensed Matter and Materials Physics (1098-0121). Vol. 78 (2008), 16, p. 165109.
[Artikel, refereegranskad vetenskaplig]

Nanoscale optoelectronics and molecular-electronics systems operate with current injection and nonequilibrium tunneling—phenomena that challenge consistent descriptions of the steady-state transport. The current affects the electron-density variation and hence the intermolecular and intramolecular bondings which in turn determine the transport magnitude. The standard approach for efficient characterization of steady-state tunneling combines ground-state density-functional theory (DFT) calculations (of an effective scattering potential) with a Landauer-type formalism and ignores all actual many-body scattering. The standard method also lacks a formal variational basis. This paper formulates a Lippmann-Schwinger (LS) collision density-functional theory (LSC DFT) for tunneling transport with full electron-electron interactions. Quantum-kinetic (Dyson) equations are used for an exact reformulation that expresses the variational noninteracting and interacting many-body scattering T matrices in terms of universal density functionals. The many-body LS variational principle defines an implicit equation for the exact nonequilibrium density.

Nyckelord: Interactions, nonequilibrium tunneling, density-functional theory, Lippmann-Schwinger variational principle, T-matrix calculations

Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2008-12-01. Senast ändrad 2015-12-17.
CPL Pubid: 79278


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Bionanosystem (2007-2015)


Nanovetenskap och nanoteknik
Mesoskopisk fysik
Matematisk fysik

Chalmers infrastruktur