CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A silicon structure for electrical characterisation of nanoscale elements

Pier Sazio ; Jonas Berg (Institutionen för mikroelektronik, Fasta tillståndets elektronik) ; Patrick See ; Chris Ford ; Per Lundgren (Institutionen för mikroelektronik, Fasta tillståndets elektronik) ; Neil Greenham ; David Ginger ; Stefan Bengtsson (Institutionen för mikroelektronik, Fasta tillståndets elektronik) ; S Chin
MRS Spring Meeting 16-20 April 2001 Vol. 679E (2001), p. B2.3.
[Konferensbidrag, refereegranskat]

The problem of mass manufacturing electrode structures suitable for contacting nanoscale elements lies primarily in the difficulty of fabricating a nanometre-scale gap between two electrodes in a well controlled, highly parallel manner. In ULSI circuit production, the gate and substrate in MOSFETs are routinely fabricated with a precise vertical spacing of 3 nm between them. In this work, we have investigated a number of highly parallel methods for the generation of nanogaps, including reconfiguration of the ubiquitous MOS device structure. The silicon dioxide layer that provides vertical separation and electrical insulation between two regions of silicon (the crystalline substrate and the poly-crystalline gate) gives a leakage current of 1 nA P -2 at 1 V for an oxide thickness of 2 nm [1]. This will enable objects the size of single molecules that are held across this layer to be detected electrically if they provide currents on the nanoampere scale, assuming a parasitic area for leakage between gate and substrate of order 1 µm 2 . In the future this kind of device has the potential to provide a bolt-on technology for the fabrication of ULSI circuits in which conventional CMOS devices are directly hybridised with functional nanoscale elements.

Nyckelord: Nanocontacts, silcon nanogaps



Denna post skapades 2006-09-19. Senast ändrad 2015-12-17.
CPL Pubid: 7870

 

Institutioner (Chalmers)

Institutionen för mikroelektronik, Fasta tillståndets elektronik (1997-2003)

Ämnesområden

Fysik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Silicon nanogaps: An electronic bridge to the molecular world


Electrical Characterization of Silicon Nanogaps