CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Noise, distortion and dynamic range of single mode 1.3 µm InGaAs vertical cavity surface emitting lasers for radio-over-fibre links

Petter Westbergh (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Emma Söderberg (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Johan S. Gustavsson (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Anders Larsson (Institutionen för mikroteknologi och nanovetenskap, Fotonik) ; Zhenzhong Zhang ; Jesper Berggren ; Mattias Hammar
IET Optoelectronics (1751-8768). Vol. 2 (2008), 2, p. 88-95.
[Artikel, refereegranskad vetenskaplig]

The analogue modulation characteristics, including second order harmonic and third order intermodulation distortion, relative intensity noise (RIN) and spurious free dynamic range (SFDR), of single mode, GaAs-based 1.28 μm vertical cavity surface emitting laser (VCSELs) with highly strained InGaAs quantum wells have been investigated. The VCSELs utilise an oxide aperture for current and optical confinement and an inverted surface relief (SR) for suppression of higher order transverse modes. The inverted SR structure also has the advantage of suppressing oxide modes that, otherwise, appear in VCSELs with a large detuning of the cavity resonance with respect to the gain peak, which is needed to extend the emission wavelength. RIN levels comparable with those of single mode VCSELs emitting at 850 nm are demonstrated, with values from 140 to 150 dB/Hz in the 2 5 GHz range. SFDR values of 100 and 95 dBHz2/3 are obtained at 2 and 5 GHz, respectively. These values are in the range of those required in radio-over-fibre links.

Nyckelord: vertical cavity surface emitting lasers

Denna post skapades 2008-11-24. Senast ändrad 2016-04-11.
CPL Pubid: 78654


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Fotonik



Chalmers infrastruktur