CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Smoothing properties and approximation of time derivatives for parabolic equations: constant time steps

Yubin Yan (Institutionen för beräkningsmatematik)
IMA J. Numer. Anal. (0272-4979). Vol. 23 (2003), 3, p. 465-487.
[Artikel, refereegranskad vetenskaplig]

We study smoothing properties and approximation of time derivatives for time discretization schemes with constant time steps for a homogeneous parabolic problem formulated as an abstract initial-value problem in a Banach space. The time stepping schemes are based on using rational functions r(z) e–z which are A()-stable for suitable [0, /2] and satisfy |r()| < 1, and the approximations of time derivatives are based on using difference quotients in time. Both smooth and non-smooth data error estimates of optimal order for the approximation of time derivatives are proved. Further, we apply the results to obtain error estimates of time derivatives in the supremum norm for fully discrete methods based on discretizing the spatial variable by a finite-element method.

Denna post skapades 2008-10-06.
CPL Pubid: 74868


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för beräkningsmatematik (2002-2004)


Numerisk analys

Chalmers infrastruktur