CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Smoothing properties and approximation of time derivatives for parabolic equations: variable time steps

Yubin Yan (Institutionen för beräkningsmatematik)
BIT (0006-3835). Vol. 43 (2003), 3, p. 647-669.
[Artikel, refereegranskad vetenskaplig]

Abstract We study smoothing properties and approximation of time derivatives for time discretization schemes with variable time steps for a homogeneous parabolic problem formulated as an abstract initial value problem in a Banach space. The time stepping methods are based on using rational approximations to the exponential function which are A()-stable for suitable (0,/2] with unit bounded maximum norm. First- and second-order approximations of time derivatives based on using difference quotients are considered. Smoothing properties are derived and error estimates are established under the so-called increasing quasi-quasiuniform assumption on the time steps.



Denna post skapades 2008-10-06.
CPL Pubid: 74867

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för beräkningsmatematik (2002-2004)

Ämnesområden

Numerisk analys

Chalmers infrastruktur