CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Face Tracking Using Rao-Blackwellized Particle Filter and Pose-Dependent Probabilistic PCA

Tiesheng Wang ; Irene Y.H. Gu (Institutionen för signaler och system, Signalbehandling) ; Andrew Backhouse (Institutionen för signaler och system, Signalbehandling) ; Pengfei Shi
IEEE International Conference on Image Processing (ICIP'08), San Diego, USA, Oct. 12-15, 2008 (2008)
[Konferensbidrag, refereegranskat]

This paper deals with face blob tracking, where face undergoes various pose changes. We propose a novel tracking method to deal with face pose changes during tracking. In the method, tracking is formulated as an approximate solution to the MAP estimate of state vector, consisting of a linear and a nonlinear part. Multi-pose face appearance is modeled by locally linear models, and estimated by the probabilistic PCA for individual pose combined with a Markov model for pose changes. Shape and locations of face blobs and pose index are assumed to be nonlinear and estimated by Rao-Blackwellized particle filters (RBPF), which also enables separate estimation of linear state vector through marginalizing the joint probability. The proposed method has been tested for videos containing frequent face pose changes and large illumination variations, under 5 pose models (left, frontal, right, up, down), and the tracking results are shown to be robust to varying speed pose changes and with relatively tight boxes.

Nyckelord: Object tracking, video surveillance, Rao-Blackwellized particle filters, probabilistic PCA, object pose model, Markov pose model, object appearance model, MAP estimation

Denna post skapades 2008-04-30.
CPL Pubid: 70558


Institutioner (Chalmers)

Institutionen för signaler och system, Signalbehandling (1900-2017)


Övrig informationsteknik

Chalmers infrastruktur