CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Organic molecular beam deposition system and initial studies of organic layer growth

Måns Andreasson (Institutionen för mikroteknologi och nanovetenskap, Mikrovågselektronik) ; Lars Ilver (Institutionen för teknisk fysik, Fasta tillståndets fysik) ; Janusz Kanski (Institutionen för teknisk fysik, Fasta tillståndets fysik) ; Thorvald Andersson (Institutionen för mikroteknologi och nanovetenskap, Mikrovågselektronik)
Physica Scripta (0031-8949). Vol. T126 (2006), p. 1-5.
[Artikel, refereegranskad vetenskaplig]

This work describes an organic molecular beam deposition system with substrate entry/exit chamber, buffer chamber and with the possibility to transfer substrate from a III–V molecular beam deposition system. Flux calibrations of organic molecules and the initial growth of organic layers are described. For this purpose, the molecules 3,4,9,10 perylene tetra carboxylic dianhydride and copper phtalocyanine were used. Layers were grown on oxidized and hydrogen passivated Si(100), Indium tin oxide and glass respectively. The growth was investigated with atomic force microscopy, reflection high energy electron diffraction and ultraviolet photoemission spectroscopy. An investigation with x-ray photoelectron and Raman spectroscopy on the effect of atmospheric exposure is also included, showing little effect of surface pollution when the samples were handled carefully. The initial formation (monolayers) of copper phtalocyanine thin films was studied by ultraviolet photoemission spectroscopy.

Nyckelord: Organic semiconductors, PTCDA, CuPc, OMBD



Denna post skapades 2008-02-01.
CPL Pubid: 67955

 

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Mikrovågselektronik
Institutionen för teknisk fysik, Fasta tillståndets fysik (2005-2015)

Ämnesområden

Ytor och mellanytor
Halvledarfysik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Thermal evaporation of small molecules-A study of interfacial, bulk and device properties for molecular electronics