CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Comparison of Shoulder Range-of-Motion and Stiffness between Volunteers, Hybrid III and THOR Alpha in Static Frontal Impact Loading

Fredrik Törnvall (Institutionen för tillämpad mekanik, Fordonssäkerhet) ; Kristian Holmqvist (Institutionen för tillämpad mekanik, Fordonssäkerhet) ; Jan Martinsson (Institutionen för tillämpad mekanik, Fordonssäkerhet) ; Johan Davidsson (Institutionen för tillämpad mekanik, Fordonssäkerhet)
International Journal of Crashworthiness (1358-8265). Vol. 10 (2005), 2, p. 151–160.
[Artikel, refereegranskad vetenskaplig]

The aim of this study was to compare the shoulder range-of-motion and stiffness between volunteers and 50th percentile dummies in static loading conditions simulating frontal collisions. Five volunteers a Hybrid III and a THOR Alpha were positioned in a test rig where both arms were statically loaded in the forward-upward direction at 90°, 135° and 170° angles while the sternum was supported. The distances between right shoulders and sternums were estimated by means of photo analysis. The photo analysis showed that the volunteers’ range-of-motion was at least three times larger for the maximum load (200 N/arm) than those of the Hybrid III and the THOR Alpha. The results indicate that the biofidelity of the dummies used today in full-frontal, oblique and offset frontal collisions may be improved by redesigned shoulder complexes. The dummies would then better predict the human kinematics and the loading of the chest by various restraint systems.

Nyckelord: Shoulder, Range-of-motion, Biofidelity, Crash test dummy, Volunteers, Hybrid III, THOR



Denna post skapades 2006-09-27. Senast ändrad 2015-01-27.
CPL Pubid: 6769

 

Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Fordonssäkerhet

Ämnesområden

Teknisk mekanik

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


A New Shoulder for the THOR Dummy Intended for Oblique Collisions