CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Brownian Approximation and Monte Carlo Simulation of the Non-Cutoff Kac Equation

Mattias Sundén (Institutionen för matematiska vetenskaper, matematisk statistik) ; Bernt Wennberg (Institutionen för matematiska vetenskaper, matematik)
Journal of Statistical Physics (0022-4715). Vol. 130 (2008), 2, p. 295-312.
[Artikel, refereegranskad vetenskaplig]

The non-cutoff Boltzmann equation can be simulated using the DSMC method, by a truncation of the collision term. However, even for computing stationary solutions this may be very time consuming, in particular in situations far from equilibrium. By adding an appropriate diffusion, to the DSMC-method, the rate of convergence when the truncation is removed, may be greatly improved. We illustrate the technique on a toy model, the Kac equation, as well as on the full Boltzmann equation in a special case.

Nyckelord: Diffusion approximation; Direct simulation Monte Carlo; Kac equation; Markov jump process; Non-equilibrium stationary state; Thermostat

Denna post skapades 2007-12-18. Senast ändrad 2016-07-11.
CPL Pubid: 63428


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaper, matematisk statistik (2005-2016)
Institutionen för matematiska vetenskaper, matematik (2005-2016)



Chalmers infrastruktur