CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Water adsorption on metal surfaces: A general picture from density functional theory studies

Sheng Meng (Institutionen för teknisk fysik, Material- och ytteori) ; Enge Wang ; Shiwu Gao
Physical Review B Vol. 69 (2004), 19, p. 195404.
[Artikel, refereegranskad vetenskaplig]

We present a density functional theory study of water adsorption on metal surfaces. Prototype water structures including monomers, clusters, one-dimensional chains, and overlayers have been investigated in detail on a model system-a Pt(111) surface. The structure, energetics, and vibrational spectra are all obtained and compared with available experimental data. This study is further extended to other metal surfaces including Ru(0001), Rh(111), Pd(111), and Au(111), where adsorption of monomers and bilayers has been investigated. From these studies, a general picture has emerged regarding the water-surface interaction, the interwater hydrogen bonding, and the wetting order of the metal surfaces. The water-surface interaction is dominated by the lone pair-d band coupling through the surface states. It is rather localized in the contacting layer. A simultaneous enhancement of hydrogen bonding is generally observed in many adsorbed structures. Some special issues such as the partial dissociation of water on Ru(0001) and in the RT39 bilayer phase, the H-up and H-down conversion, and the quantum-mechanical motions of H atoms are also discussed.

Nyckelord: MOLECULAR-DYNAMICS SIMULATIONS; ENERGY ELECTRON-DIFFRACTION; HYDROGEN-BONDED SYSTEMS; WAVE BASIS-SET; VIBRATIONAL-SPECTRA; PARTIAL DISSOCIATION; PT(111) SURFACE; ICE FILMS; CLUSTERS; H2O



Denna post skapades 2007-10-29. Senast ändrad 2010-01-26.
CPL Pubid: 58915

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för teknisk fysik, Material- och ytteori (1900-2015)
Institutionen för fysik (GU) (GU)

Ämnesområden

Den kondenserade materiens fysik
Ytor och mellanytor
Elektronstruktur

Chalmers infrastruktur