CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

U-Duality and the Compactified Gauss-Bonnet Term

Ling Bao (Institutionen för fundamental fysik, Matematisk fysik) ; Johan Bielecki (Institutionen för fundamental fysik, Matematisk fysik) ; Martin Cederwall (Institutionen för fundamental fysik, Matematisk fysik) ; Bengt E. W. Nilsson (Institutionen för fundamental fysik, Matematisk fysik) ; Daniel Persson
Journal of High Energy Physics (2007)
[Artikel, refereegranskad vetenskaplig]

We present the complete toroidal compactification of the Gauss-Bonnet Lagrangian from D dimensions to D-n dimensions. Our goal is to investigate the resulting action from the point of view of the "U-duality" symmetry SL(n+1,R) which is present in the tree-level Lagrangian when D-n=3. The analysis builds upon and extends the investigation of the paper [arXiv:0706.1183], by computing in detail the full structure of the compactified Gauss-Bonnet term, including the contribution from the dilaton exponents. We analyze these exponents using the representation theory of the Lie algebra sl(n+1,R) and determine which representation is the relevant one for quadratic curvature corrections. By interpreting the result of the compactification as a leading term in a large volume expansion of an SL(n+1,Z)-invariant action, we conclude that the overall exponential dilaton factor should not be included in the representation structure. As a consequence, all dilaton exponents correspond to weights of sl(n+1,R), which, nevertheless, remain on the positive side of the root lattice.

Denna post skapades 2007-10-26. Senast ändrad 2016-05-17.
CPL Pubid: 57946


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för fundamental fysik, Matematisk fysik (2005-2013)



Chalmers infrastruktur