CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Spectral distance for ARMA models applied to electroencephalogram for early detection of hypoxia

Nils Löfgren (Institutionen för signaler och system) ; K. Lindecrantz ; Anders Flisberg ; Ralph Bågenholm ; Ingemar Kjellmer ; M. Thordstein
J Neural Eng (1741-2560 (Print)). Vol. 3 (2006), 3, p. 227-34.
[Artikel, refereegranskad vetenskaplig]

A novel measure of spectral distance is presented, which is inspired by the prediction residual parameter presented by Itakura in 1975, but derived from frequency domain data and extended to include autoregressive moving average (ARMA) models. This new algorithm is applied to electroencephalogram (EEG) data from newborn piglets exposed to hypoxia for the purpose of early detection of hypoxia. The performance is evaluated using parameters relevant for potential clinical use, and is found to outperform the Itakura distance, which has proved to be useful for this application. Additionally, we compare the performance with various algorithms previously used for the detection of hypoxia from EEG. Our results based on EEG from newborn piglets show that some detector statistics divert significantly from a reference period less than 2 min after the start of general hypoxia. Among these successful detectors, the proposed spectral distance is the only spectral-based parameter. It therefore appears that spectral changes due to hypoxia are best described by use of an ARMA- model-based spectral estimate, but the drawback of the presented method is high computational effort.

Nyckelord: *Algorithms, Animals, Animals, Newborn, Artificial Intelligence, Diagnosis, Computer-Assisted/*methods, Electroencephalography/*methods, Hypoxia, Brain/*diagnosis/*physiopathology, Pattern Recognition, Automated/methods, Regression Analysis, Reproducibility of Results, Sensitivity and Specificity, Swine

Denna post skapades 2007-10-11. Senast ändrad 2010-01-26.
CPL Pubid: 52759


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för signaler och system (1900-2017)
Institutionen för kliniska vetenskaper, sektionen för kvinnors och barns hälsa (GU)



Chalmers infrastruktur