CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Reducing uncertainty in health-care resource allocation

Tomas Simonsson ; Katarina Sjölund ; Per Bümming ; Håkan Ahlman ; Bengt E Nilsson ; Anders Odén (Institutionen för matematiska vetenskaper)
British journal of cancer (0007-0920). Vol. 96 (2007), 12, p. 1834-8.
[Artikel, refereegranskad vetenskaplig]

A key task for health policymakers is to optimise the outcome of health care interventions. The pricing of a new generation of cancer drugs, in combination with limited health care resources, has highlighted the need for improved methodology to estimate outcomes of different treatment options. Here we introduce new general methodology, which for the first time employs continuous hazard functions for analysis of survival data. Access to continuous hazard functions allows more precise estimations of survival outcomes for different treatment options. We illustrate the methodology by calculating outcomes for adjuvant treatment of gastrointestinal stromal tumours with imatinib mesylate, which selectively inhibits the activity of a cancer-causing enzyme and is a hallmark representative for the new generation of cancer drugs. The calculations reveal that optimal drug pricing can generate all win situations that improve drug availability to patients, make the most of public expenditure on drugs and increase pharmaceutical company gross profits. The use of continuous hazard functions for analysis of survival data may reduce uncertainty in health care resource allocation, and the methodology can be used for drug price negotiations and to investigate health care intervention thresholds. Health policy makers, pharmaceutical industry, reimbursement authorities and insurance companies, as well as clinicians and patient organisations, should find the methodology useful.

Nyckelord: *Delivery of Health Care, Gastrointestinal Stromal Tumors/economics/mortality/surgery/therapy, Humans, Proportional Hazards Models, *Quality-Adjusted Life Years, Resource Allocation/*methods, Retrospective Studies, Survival Analysis, Sweden



Denna post skapades 2007-08-28. Senast ändrad 2012-03-14.
CPL Pubid: 45952

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för biomedicin, avdelningen för medicinsk kemi och cellbiologi (GU)
Institutionen för kliniska vetenskaper, sektionen för kirurgi och kirurgisk gastroforskning, Avdelningen för kirurgi (GU)
Institutionen för kliniska vetenskaper, sektionen för kirurgi och kirurgisk gastroforskning (GU)
Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)

Ämnesområden

MEDICIN OCH HÄLSOVETENSKAP

Chalmers infrastruktur