CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A Multitype Branching Processes Approach to the Evolutionary Dynamics of Escape

Maria Conceicao Serra (Institutionen för matematiska vetenskaper)
Göteborg : Chalmers University of Technology, 2007. ISBN: 978-91-7291-997-6.
[Doktorsavhandling]

Evolutionary dynamics of escape is a recent development in theoretical biology. It is an attempt to predict possible patterns of population dynamics for a certain strain of viruses placed in a hostile environment. The only way to escape extinction for the virus is to find a new form better adapted to the new environment. This is usually achieved by mutations in certain positions of the genome. In this thesis we use multitype Galton-Watson branching processes to model the evolution of such virus populations and provide answers to some of the most relevant questions arising in them. We determine the asymptotic probability of escape for a population stemming from a single progenitor. The calculations are obtained assuming mutations are rare events and generalize results previously known for particular reproduction laws. We also give a description of the random path to escape, that is the chain of mutations leading to the escape form of the virus. Using this description, we also study the waiting time to escape, i.e., the time it takes to produce the escape form of the virus. We start by deriving results for simple populations allowing for two-types of individuals and simple mutation schemes. Later we perform asymptotic analysis, again assuming mutations are rare, for populations with quite general reproduction and mutation schemes.

Nyckelord: Galton-Watson branching processes, multitype, decomposable processes, population dynamics, extinction, mutation, path to escape, waiting time to escape



Denna post skapades 2007-08-24. Senast ändrad 2013-09-25.
CPL Pubid: 45639

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)

Ämnesområden

Tillämpad matematik

Chalmers infrastruktur

Examination

Datum: 2007-09-21
Tid: 10:15
Lokal: Pascal, Matematiska Vetenskaper, Chalmers Tvärgata 3, Chalmers tekniska högskola
Opponent: Professor Nikolay Yanev, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria

Ingår i serie

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie 2678