CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Micropipet Writing Technique for Production of Two-Dimensional Lipid Bilayer Nanotube-Vesicle Networks on Functionalized and Patterned Surfaces

Kristin Sott (Institutionen för kemi och biovetenskap ; Institutionen för fysik (GU)) ; Mattias Karlsson (Institutionen för fysikalisk kemi) ; Johan Pihl (Institutionen för kemi och biovetenskap) ; Johan Hurtig (Institutionen för fysikalisk kemi) ; Tatsiana Lobovkina (Institutionen för kemi och biovetenskap) ; Owe Orwar (Institutionen för fysikalisk kemi)
Langmuir (0743-7463). Vol. 19 (2003), 9, p. 3904-3910.
[Artikel, refereegranskad vetenskaplig]

We present a micropipet-assisted writing technique for formation of two-dimensional networks of phospholipid vesicles and nanotubes on functionalized and patterned substrates. The substrates are patterned with vesicle-adhesive circular spots (5-7.5 µm in diameter) consisting of a basal layer of biotin on gold and an apical coating of NeutrAvidin in a sandwich manner. The area surrounding the adhesive spots is coated with a phosphatidylcholine bilayer membrane, preventing protein and liposome adhesion. Networks were formed by aspirating a biotin-functionalized giant unilamellar or multilamellar liposome (5-50 µm in diameter) into a ~3 µm inner diameter borosilicate glass micropipet. By using a pressurized-air microejection system, a portion of the liposome is then ejected back into the solution while forming a first vesicle ~3 µm in diameter. This vesicle is placed on an adhesive spot. When the micropipet is moved, a nanotube connection is formed from the first vesicle and is pulled to the next adhesive spot where a second vesicle is ejected. This procedure can then be repeated until the lipid material is consumed in the pipet. The method allows for formation of networks with a large number of nodes and vertexes with well-defined geometry and surface adhesion, and represents a first step toward very large scale integration of nanotube-vesicle networks in, for example, nanofluidic applications.

Denna post skapades 2007-08-06. Senast ändrad 2010-10-21.
CPL Pubid: 44686


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi och biovetenskap (1900-2005)
Institutionen för fysik (GU) (GU)
Institutionen för fysikalisk kemi (1900-2003)


Biofysikalisk kemi

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Nanotube Vesicle Networks: Immobilization and Transport Studies