CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Tensile properties and microstructural characterization of Sn-0.7Cu-0.4Co bulk solder alloy for electronics applications

Cristina Andersson (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Peng Sun (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem) ; Johan Liu (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem)
Journal of Alloys and Compounds (0925-8388). Vol. 457 (2008), 1/2, p. 97-105.
[Artikel, refereegranskad vetenskaplig]

The ternary Sn–Cu–Co system eutectic composition was obtained by means of CALPHAD (CALculation of PHAse Diagram) methodology and it was found to be 0.4% Co and 0.7% Cu (wt%) with a melting point of 224 ◦C. The tensile behavior of this alloy was investigated at different strain rates (10−5, 10−4 and 10−3 s−1) and compared to both Sn–37Pb and Sn–4.0Ag–0.5Cu. The Sn–4.0Ag–0.5Cu alloy depicts the highest ultimate tensile strength (UTS) followed by the Sn–37P and finally the Sn–0.7Cu–0.4Co system. The elastic modulus was also higher for the Sn–4.0Ag–0.5Cu followed by the Sn–0.7Cu–0.4Co and last the Sn–37Pb. The microstructure of the Sn–0.7Cu–0.4Co alloy is composed of two types of intermetallic phases, (Cu,Co)6Sn5 and (Co,Cu)Sn2 dispersed in a Sn-rich matrix. The microstructure of this alloy proved to be very stable, after aging at 150 °C for 24 h. The eutectic Sn–0.7Cu–0.4Co solder alloy can therefore be a very good alternative for theSACalloys for surface mount technology applications.

Nyckelord: Lead-free; Sn-Cu-Co; Solder alloy; Strain rate; Tensile properties

Denna post skapades 2007-05-15. Senast ändrad 2016-08-16.
CPL Pubid: 41643


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för mikroteknologi och nanovetenskap, Bionanosystem (2007-2015)


Övrig teknisk materialvetenskap

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Reliability, fatigue and mechanical characterization of lead-free solders for electronic packaging applications