CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Moving Object Tracking from Videos based on Enhanced Space-Time-Range Mean Shift and Motion Consistency

Tiesheng Wang ; Irene Y.H. Gu (Institutionen för signaler och system, Signalbehandling) ; Andrew Backhouse (Institutionen för signaler och system ; Institutionen för signaler och system, Signalbehandling) ; Pengfei Shi
IEEE International Conference on Multimedia & Expo (ICME '07), 2007 (2007)
[Konferensbidrag, refereegranskat]

Video surveillance and object tracking have drawn increased interests in recent years. This paper addresses the problem of moving object tracking from image sequences captured from stationary cameras. Based on our previous work on video segmentation using joint space-time-range mean shift, we extend the scheme to enable the tracking of moving objects. Large displacements of pdf modes in consecutive image frames are exploited for tracking. We also improve the above mean shift-based video segmentation by introducing edge-guided merging of over-segmented regions. This can be viewed as an extension of the enhanced mean shift 2D image segmentation to the enhanced space-time-range mean shift video segmentation. Experiments have been conducted on several indoor and outdoor videos. Our preliminary results and performance evaluation have indicated the effectiveness of the proposed scheme.

Nyckelord: video segmentation, multiple object tracking, motion field, joint space-time-range mean shift

Denna post skapades 2007-04-12.
CPL Pubid: 40497


Institutioner (Chalmers)

Institutionen för signaler och system, Signalbehandling (1900-2017)
Institutionen för signaler och system (1900-2017)



Chalmers infrastruktur