CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A numerical investigation of the stability of steady states and critical phenomena for the spherically symmetric Einstein–Vlasov system

Håkan Andréasson (Institutionen för matematiska vetenskaper) ; Gerhared Rein
Classical and Quantum Gravity Vol. 23 (2006), p. 3659-3677.
[Artikel, refereegranskad vetenskaplig]

The stability features of steady states of the spherically symmetric Einstein–Vlasov system are investigated numerically. We find support for the conjecture by Zel'dovich and Novikov that the binding energy maximum along a steady state sequence signals the onset of instability, a conjecture which we extend to and confirm for non-isotropic states. The sign of the binding energy of a solution turns out to be relevant for its time evolution in general. We relate the stability properties to the question of universality in critical collapse and find that for Vlasov matter universality does not seem to hold.

Electronic Journal Print publication: Issue 11 (7 June 2006)

Denna post skapades 2007-01-15. Senast ändrad 2007-06-26.
CPL Pubid: 36096


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)



Chalmers infrastruktur