CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Explicit streamline diffusion finite element methods for the compressible Euler equations in conservation variables

Peter Hansbo (Institutionen för tillämpad mekanik, Dynamik)
Journal of Computational Physics Vol. 109 (1993), 2, p. 274-288.
[Artikel, refereegranskad vetenskaplig]

This paper concerns the streamline diffusion finite element method applied to one- and two-dimensional gas flow described by the inviscid Euler equations in conservation variables. We point out that the streamline diffusion method is a natural finite element analogue to upstream-type finite difference/volume schemes and in fact constitutes a general framework for a large class of them. We study explicit implementations of the method and derive different choices of stabilizing streamline diffusion matrices; in particular, we propose a consistent, fully multidimensional, version. A brief review of the theoretical background to the method is presented, and some numerical results in two dimensions are given.

Denna post skapades 2007-03-06.
CPL Pubid: 26532


Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Dynamik


Numerisk analys

Chalmers infrastruktur