CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations

Peter Hansbo (Institutionen för tillämpad mekanik, Dynamik) ; Anders Szepessy
Computer Methods in Applied Mechanics and Engineering Vol. 84 (1990), 1990, p. 175-192.
[Artikel, refereegranskad vetenskaplig]

In this paper a streamline diffusion finite element method is introduced for the time-dependent incompressible Navier-Stokes equations in a bounded domnain in R^2 and R^3 in the case of high Reynolds number flow. An error estimate is proved and numerical results are given. The method is based on a mixed velocity-pressure formulation using the same finite element discretization of space-time for the velocity and the pressure spaces, which consists of piecewise linear functions, together with certain least-squares modifications of the Galerkin variational formulation giving added stability without sacrificing accuracy.



Denna post skapades 2007-03-06.
CPL Pubid: 26525

 

Institutioner (Chalmers)

Institutionen för tillämpad mekanik, Dynamik

Ämnesområden

Numerisk analys
Strömningsmekanik

Chalmers infrastruktur