CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Switching the mode of metabolism in the yeast Saccharomyces cerevisiae.

Karin Otterstedt ; Christer Larsson (Institutionen för kemi och biovetenskap, Molekylär bioteknik) ; R Bill ; Anders Ståhlberg (Institutionen för kemi och biovetenskap, Molekylär bioteknik) ; E Boles ; Stefan Hohmann ; Lena Gustafsson (Institutionen för kemi och biovetenskap, Molekylär bioteknik)
Embro reports (1469-221X). Vol. 5 (2004), 5, p. 532-537.
[Artikel, refereegranskad vetenskaplig]

The biochemistry of most metabolic pathways is conserved from bacteria to humans, although the control mechanisms are adapted to the needs of each cell type. Oxygen depletion commonly controls the switch from respiration to fermentation. However, Saccharomyces cerevisiae also controls that switch in response to the external glucose level. We have generated an S. cerevisiae strain in which glucose uptake is dependent on a chimeric hexose transporter mediating reduced sugar uptake. This strain shows a fully respiratory metabolism also at high glucose levels as seen for aerobic organisms, and switches to fermentation only when oxygen is lacking. These observations illustrate that manipulating a single step can alter the mode of metabolism. The novel yeast strain is an excellent tool to study the mechanisms underlying glucose-induced signal transduction.

Nyckelord: metabolism, respiration, hexose transport, glycolysis, signalling, human skeletal-muscle, individual hexose transporters, glycolytic gene-expression, glucose repression, pyruvate decarboxylase, exercise, growth, activation, mechanisms, hypoxia



Denna post skapades 2007-02-07. Senast ändrad 2011-01-20.
CPL Pubid: 26361

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för kemi och biovetenskap, Molekylär bioteknik (2002-2004)
Institutionen för cell- och molekylärbiologi, mikrobiologi (1994-2011)

Ämnesområden

Cell- och molekylärbiologi

Chalmers infrastruktur