CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

A biohybrid dynamic random access memory

J. Sinclair ; D. Granfeldt ; J. Pihl ; Maria Millingen (Institutionen för kemi- och bioteknik, Fysikalisk kemi) ; Per Lincoln (Institutionen för kemi- och bioteknik, Fysikalisk kemi) ; C. Farre ; Lena Peterson (Institutionen för signaler och system, Signalbehandling) ; Owe Orwar (Institutionen för kemi- och bioteknik, Fysikalisk kemi)
Journal of the American Chemical Society (0002-7863). Vol. 128 (2006), 15, p. 5109-5113.
[Artikel, refereegranskad vetenskaplig]

We report that GABA(A) receptors in a patch-clamped biological cell form a short-term memory circuit when integrated with a scanning-probe microfluidic device. Laminar patterns of receptor activators (agonists) provided by the microfluidic device define and periodically update the data input which is read and stored by the receptors as state distributions (based on intrinsic multistate kinetics). The memory is discharged over time and lasts for seconds to minutes depending on the input function. The function of the memory can be represented by an equivalent electronic circuit with striking similarity in function to a dynamic random access memory (DRAM) used in electronic computers. Multiplexed biohybrid memories may form the basis of large-scale integrated biocomputational/sensor devices with the curious ability to use chemical signals including odorants, neurotransmitters, chemical and biological warfare agents, and many more as input signals.



Denna post skapades 2007-02-05. Senast ändrad 2011-08-31.
CPL Pubid: 26243

 

Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Fysikalisk kemi (2005-2014)
Institutionen för signaler och system, Signalbehandling

Ämnesområden

Kemi

Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:


Patch-clamp studies of the GABAA receptor using microfluidic methods


Studies of ligand- and temperature-gated ion channels using microfluidic methods