CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Electrophoretic transport in surfactant nanotube networks wired on microfabricated substrates

Johan Hurtig (Institutionen för kemi- och bioteknik, Fysikalisk kemi) ; B. Gustafsson ; Michal Tokarz (Institutionen för kemi- och bioteknik, Fysikalisk kemi) ; Owe Orwar (Institutionen för kemi- och bioteknik, Fysikalisk kemi)
Analytical Chemistry (0003-2700). Vol. 78 (2006), 15, p. 5281-5288.
[Artikel, refereegranskad vetenskaplig]

Nanofluidic devices are rapidly emerging as tools uniquely suited to transport and interrogate single molecules. We present a simple method to rapidly obtain compact surfactant nanotube networks of controlled geometry and length. The nanotubes, 100- 300 nm in diameter, are pulled from lipid vesicles using a micropipet technique, with multilamellar vesicles serving as reservoirs of surfactant material. In a second step, the nanotubes are wired around microfabricated SU-8 pillars. In contrast to unrestrained surfactant networks that minimize their surface free energy by minimizing nanotube path length, the technique presented here can produce nanotube networks of arbitrary geometries. For example, nanotubes can be mounted directly on support pillars, and long stretches of nanotubes can be arranged in zigzag patterns with turn angles of 180 degrees. The system is demonstrated to support electrophoretic transport of colloidal particles contained in the nanotubes down to the limit of single particles. We show that electrophoretic migration velocity is linearly dependent on the applied field strength and that a local narrowing of the nanotube diameter results from adhesion and bending around SU-8 pillars. The method presented here can aid in the fabrication of fully integrated and multiplexed nanofluidic devices that can operate with single molecules.

Denna post skapades 2007-02-05. Senast ändrad 2007-12-07.
CPL Pubid: 26230


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi- och bioteknik, Fysikalisk kemi (2005-2014)



Chalmers infrastruktur

Relaterade publikationer

Denna publikation ingår i:

Nanotube Vesicle Networks: Immobilization and Transport Studies