CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Modeling of kinematic hardening at large biaxial deformations in pearlitic rail steel

Knut Andreas Meyer (Institutionen för industri- och materialvetenskap, Material- och beräkningsmekanik ) ; Magnus Ekh (Institutionen för industri- och materialvetenskap, Material- och beräkningsmekanik ) ; Johan Ahlström (Institutionen för industri- och materialvetenskap, Konstruktionsmaterial)
International Journal of Solids and Structures (0020-7683). Vol. 130 (2018), p. 122-132.
[Artikel, refereegranskad vetenskaplig]

Using an Axial-Torsion testing machine, pearlitic R260 steel specimens are twisted until fracture under different axial loads. A well established framework for finite elastoplasticity with kinematic hardening is used to model the deformation of the specimens. In particular, we evaluate the ability of different kinematic hardening laws to predict the observed biaxial load versus displacement response. It is found that the combination of Armstrong-Frederick dynamic recovery and Burlet-Cailletaud radial evanescence saturation is efficient even for the large strains achieved in this study. The results are less conclusive on the appropriateness of replacing the Armstrong-Frederick with an Ohno-Wang type of kinematic hardening law.

Nyckelord: Axial-Torsion, Pearlitic steel, Biaxial, Multiaxial, Finite strains, high-pressure torsion, large ratcheting strains, finite-element-analysis, plastic-deformation, cyclic plasticity, mechanical-properties, dynamic recovery, critical state, carbon-steel, behavior, Mechanics, crostructure and processing, v445, p237, FORMATION (NANOSPD6)6th International Conference on Nanomaterials by Severe Plastic, aboche jl, 1986, international journal of plasticity, v2, p149, lobelle p, 1995, international journal of plasticity, v11, p295



Denna post skapades 2018-01-10.
CPL Pubid: 254403

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)