CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Increased thermal stability of nanocellulose composites by functionalization of the sulfate groups on cellulose nanocrystals with azetidinium ions

Mikaela Börjesson (Institutionen för kemi och kemiteknik, Organisk kemi) ; Karin Sahlin (Institutionen för kemi och kemiteknik, Organisk kemi) ; Diana Bernin ; Gunnar Westman (Institutionen för kemi och kemiteknik, Organisk kemi)
Journal of Applied Polymer Science (0021-8995). Vol. 135 (2018), 10, p. Art no: 45963.
[Artikel, refereegranskad vetenskaplig]

Cellulose nanocrystals (CNCs) prepared via sulfuric acid hydrolysis are decorated with sulfate groups that yield a stable water suspension. To make the CNCs adaptable for use in composites, the hydroxyl groups on the surface are usually hydrophobized. In this article, an alternative hydrophobization method is described in which the sulfate groups are conjugated with azetidinium salts. The results of this study show that the sulfate groups can be functionalized with azetidinium salts and from thermal studies, it was discovered that the functionalization led to a 100 degrees C increase in thermal stability, compared with unmodified CNCs. The nanocomposites prepared by extrusion of CNC-coated low-density polyethylene powder displayed similar mechanical properties as the CNC-reference sample, but without the discoloration, due to the increased thermal stability. In conclusion, the azetidinium reagent reacts preferentially with sulfate groups, and this new type of chemical conversion of sulfate groups on polysaccharides will be beneficial in nanocomposite manufacturing.

Nyckelord: biopolymers and renewable polymers; cellulose and other wood products; functionalization of polymers; nanoparticles; nanowires and nanocrystals

Denna post skapades 2018-01-10. Senast ändrad 2018-01-17.
CPL Pubid: 254397


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för kemi och kemiteknik, Organisk kemi



Chalmers infrastruktur