CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Alcohols enhance the rate of acetic acid diffusion in S. cerevisiae: biophysical mechanisms and implications for acetic acid tolerance

Lina Lindahl (Institutionen för biologi och bioteknik, Industriell bioteknik) ; Samuel Genheden ; Fábio Luis Da Silva Faria Oliveira (Institutionen för biologi och bioteknik, Industriell bioteknik) ; Stefan Allard (Institutionen för kemi och kemiteknik, Kärnkemi) ; Leif A Eriksson ; Lisbeth Olsson (Institutionen för biologi och bioteknik, Industriell bioteknik) ; Maurizio Bettiga (Institutionen för biologi och bioteknik, Industriell bioteknik)
Microbial cell (2311-2638). Vol. 5 (2017), 1, p. 42-55.
[Artikel, refereegranskad vetenskaplig]

Microbial cell factories with the ability to maintain high productivity in the presence of weak organic acids, such as acetic acid, are required in many industrial processes. For example, fermentation media derived from lignocellulosic biomass are rich in acetic acid and other weak acids. The rate of diffusional entry of acetic acid is one parameter determining the ability of microorganisms to tolerance the acid. The present study demonstrates that the rate of acetic acid diffusion in S. cerevisiae is strongly affected by the alcohols ethanol and n-butanol. Ethanol of 40 g/L and n-butanol of 8 g/L both caused a 65% increase in the rate of acetic acid diffusion, and higher alcohol concentrations caused even greater increases. Molecular dynamics simulations of membrane dynamics in the presence of alcohols demonstrated that the partitioning of alcohols to the head group region of the lipid bilayer causes a considerable increase in the membrane area, together with reduced membrane thickness and lipid order. These changes in physiochemical membrane properties lead to an increased number of water molecules in the membrane interior, providing biophysical mechanisms for the alcohol-induced increase in acetic acid diffusion rate. n-butanol affected S. cerevisiae and the cell membrane properties at lower concentrations than ethanol, due to greater and deeper partitioning in the membrane. This study demonstrates that the rate of acetic acid diffusion can be strongly affected by compounds that partition into the cell membrane, and highlights the need for considering interaction effects between compounds in the design of microbial processes.



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2018-01-03. Senast ändrad 2018-01-04.
CPL Pubid: 254278

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)