CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

GMC Collisions as Triggers of Star Formation. IV. the Role of Ambipolar Diffusion

D. Christie ; B. Wu ; Jonathan Tan (Institutionen för rymd-, geo- och miljövetenskap, Astronomi och plasmafysik)
Astrophysical Journal (0004-637X). Vol. 848 (2017), 1, p. 50-63.
[Artikel, refereegranskad vetenskaplig]

© 2017. The American Astronomical Society. All rights reserved.. We investigate the role of ambipolar diffusion (AD) in collisions between magnetized giant molecular clouds (GMCs), which may be an important mechanism for triggering star cluster formation. Three-dimensional simulations of GMC collisions are performed using a version of the Enzo magnetohydrodynamics code that has been extended to include AD. The resistivities are calculated using the 31-species chemical model of Wu et al. (2015). We find that in the weak-field, 10 μG case, AD has only a modest effect on the dynamical evolution during the collision. However, for the stronger-field, case involving near-critical clouds, AD results in the formation of dense cores in regions where collapse is otherwise inhibited. The overall efficiency of formation of cores with n H ≥ 10 6 cm -3 in these simulations is increases from about 0.2% to 2% once AD is included, comparable to observed values in star-forming GMCs. The gas around these cores typically has relatively slow infall at speeds that are a modest fraction of the free-fall speed.

Nyckelord: ISM: clouds , ISM: magnetic fields , methods: numerical , stars: formation

Denna post skapades 2017-12-29. Senast ändrad 2018-01-14.
CPL Pubid: 254196


Läs direkt!

Länk till annan sajt (kan kräva inloggning)