CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Realizing the analytic surgery group of Higson and Roe geometrically part III: higher invariants

R.J. Deeley ; Magnus Goffeng (Institutionen för matematiska vetenskaper)
Mathematische Annalen (0025-5831). Vol. 366 (2016), 3-4, p. 1513-1559.
[Artikel, refereegranskad vetenskaplig]

© 2016, Springer-Verlag Berlin Heidelberg. We construct an isomorphism between the geometric model and Higson-Roe’s analytic surgery group, reconciling the constructions in the previous papers in the series on “Realizing the analytic surgery group of Higson and Roe geometrically” with their analytic counterparts. Following work of Lott and Wahl, we construct a Chern character on the geometric model for the surgery group; it is a “delocalized Chern character”, from which Lott’s higher delocalized ρ-invariants can be retrieved. Following work of Piazza and Schick, we construct a geometric map from Stolz’ positive scalar curvature sequence to the geometric model of Higson-Roe’s analytic surgery exact sequence.



Denna post skapades 2017-12-28.
CPL Pubid: 254154

 

Läs direkt!


Länk till annan sajt (kan kräva inloggning)


Institutioner (Chalmers)

Institutionen för matematiska vetenskaperInstitutionen för matematiska vetenskaper (GU)

Ämnesområden

Matematisk analys
Geometri

Chalmers infrastruktur