CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Effect of active constituents in the atmosphere on the sintering of chromium-alloyed PM steels

Seshendra Karamchedu (Institutionen för material- och tillverkningsteknik, Yt- och mikrostrukturteknik) ; Eduard Hryha (Institutionen för material- och tillverkningsteknik, Yt- och mikrostrukturteknik) ; Lars Nyborg (Institutionen för material- och tillverkningsteknik)
World Powder Metallurgy 2016 Congress and Exhibition, World PM 2016; Hamburg; Germany; 9 October 2016 through 13 October 2016 (2016)
[Konferensbidrag, refereegranskat]

Sintering of chromium-alloyed PM steels in atmospheres containing hydrogen and carbon monoxide has been studied. Thermogravimetric analysis was performed on PM steel compacts in atmospheres containing the gaseous constituents individually and when present together. Oxidation/reduction and carburization/decarburization of the compacts was evaluated based on thermogravimetric analysis complemented with bulk carbon and oxygen analysis of the samples. The results suggest that hydrogen promotes the reduction of the iron oxide layer covering the powder surface below 650 °C, the effectiveness of which improves with an increase in the concentration of hydrogen in the atmosphere. When hydrogen was additionally present, an enhancement in the reduction and carburization behavior was observed in the case of carbon monoxide containing atmospheres.

Nyckelord: Carbon monoxide; Carburization; Chromium-alloyed steel; Hydrogen; Oxidation; Reduction; Sintering atmosphere



Den här publikationen ingår i följande styrkeområden:

Läs mer om Chalmers styrkeområden  

Denna post skapades 2017-12-27. Senast ändrad 2018-01-04.
CPL Pubid: 254080

 

Institutioner (Chalmers)

Institutionen för material- och tillverkningsteknik, Yt- och mikrostrukturteknik (2005-2017)
Institutionen för material- och tillverkningsteknik (2005-2017)

Ämnesområden

Materialvetenskap
Transport
Metallurgi och metalliska material

Chalmers infrastruktur