CPL - Chalmers Publication Library
| Utbildning | Forskning | Styrkeområden | Om Chalmers | In English In English Ej inloggad.

Simultaneous mapping and quantitation of ribonucleotides in human mitochondrial DNA

Katrin Kreisel ; Martin Engqvist (Institutionen för biologi och bioteknik, Systembiologi) ; Anders R. Clausen
Journal of Visualized Experiments (1940087X). Vol. 2017 (2017), 129, p. e56551.
[Artikel, refereegranskad vetenskaplig]

Established approaches to estimate the number of ribonucleotides present in a genome are limited to the quantitation of incorporated ribonucleotides using short synthetic DNA fragments or plasmids as templates and then extrapolating the results to the whole genome. Alternatively, the number of ribonucleotides present in a genome may be estimated using alkaline gels or Southern blots. More recent in vivo approaches employ Next-generation sequencing allowing genome-wide mapping of ribonucleotides, providing the position and identity of embedded ribonucleotides. However, they do not allow quantitation of the number of ribonucleotides which are incorporated into a genome. Here we describe how to simultaneously map and quantitate the number of ribonucleotides which are incorporated into human mitochondrial DNA in vivo by Next-generation sequencing. We use highly intact DNA and introduce sequence specific double strand breaks by digesting it with an endonuclease, subsequently hydrolyzing incorporated ribonucleotides with alkali. The generated ends are ligated with adapters and these ends are sequenced on a Next-generation sequencing machine. The absolute number of ribonucleotides can be calculated as the number of reads outside the recognition site per average number of reads at the recognition site for the sequence specific endonuclease. This protocol may also be utilized to map and quantitate free nicks in DNA and allows adaption to map other DNA lesions that can be processed to 5´-OH ends or 5´-phosphate ends. Furthermore, this method can be applied to any organism, given that a suitable reference genome is available. This protocol therefore provides an important tool to study DNA replication, 5´-end processing, DNA damage, and DNA repair.

Nyckelord: 5´-End-seq; DNA damage; DNA replication; Human mitochondrial DNA; HydEn-seq; Issue 129; Molecular biology; Next-generation sequencing; Quantitation and mapping of ribonucleotides in DNA

Denna post skapades 2017-12-22. Senast ändrad 2018-01-10.
CPL Pubid: 254061


Läs direkt!

Länk till annan sajt (kan kräva inloggning)

Institutioner (Chalmers)

Institutionen för biologi och bioteknik, Systembiologi


Industriell bioteknik

Chalmers infrastruktur